Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Parallel intermediate conductance K+ and Cl- channel activity mediates electroneutral K+ exit across basolateral membranes in rat distal colon.

Identifieur interne : 000227 ( Main/Exploration ); précédent : 000226; suivant : 000228

Parallel intermediate conductance K+ and Cl- channel activity mediates electroneutral K+ exit across basolateral membranes in rat distal colon.

Auteurs : Shabina Rehman [États-Unis] ; Karthikeyan Narayanan [États-Unis] ; Andrew J. Nickerson [États-Unis] ; Steven D. Coon [États-Unis] ; Kazi Mirajul Hoque [États-Unis] ; Geoffrey I. Sandle [Royaume-Uni] ; Vazhaikkurichi M. Rajendran [États-Unis]

Source :

RBID : pubmed:32567323

Descripteurs français

English descriptors

Abstract

Transepithelial K+ absorption requires apical K+ uptake and basolateral K+ exit. In the colon, apical H+-K+-ATPase mediates cellular K+ uptake, and it has been suggested that electroneutral basolateral K+ exit reflects K+-Cl- cotransporter-1 (KCC1) operating in parallel with K+ and Cl- channels. The present study was designed to identify basolateral transporter(s) responsible for K+ exit in rat distal colon. Active K+ absorption was determined by measuring 86Rb+ (K+ surrogate) fluxes across colonic epithelia under voltage-clamp conditions. With zero Cl- in the mucosal solution, net K+ absorption was reduced by 38%, indicating that K+ absorption was partially Cl--dependent. Serosal addition of DIOA (KCC1 inhibitor) or Ba2+ (nonspecific K+ channel blocker) inhibited net K+ absorption by 21% or 61%, respectively, suggesting that both KCC1 and K+ channels contribute to basolateral K+ exit. Clotrimazole and TRAM34 (IK channel blockers) added serosally inhibited net K+ absorption, pointing to the involvement of IK channels in basolateral K+ exit. GaTx2 (CLC2 blocker) added serosally also inhibited net K+ absorption, suggesting that CLC2-mediated Cl- exit accompanies IK channel-mediated K+ exit across the basolateral membrane. Net K+ absorption was not inhibited by serosal addition of either IbTX (BK channel blocker), apamin (SK channel blocker), chromanol 293B (KV7 channel blocker), or CFTRinh172 (CFTR blocker). Immunofluorescence studies confirmed basolateral membrane colocalization of CLC2-like proteins and Na+-K+-ATPase α-subunits. We conclude that active K+ absorption in rat distal colon involves electroneutral basolateral K+ exit, which may reflect IK and CLC2 channels operating in parallel.NEW & NOTEWORTHY This study demonstrates that during active electroneutral K+ absorption in rat distal colon, K+ exit across the basolateral membrane mainly reflects intermediate conductance K+ channels operating in conjunction with chloride channel 2, with a smaller, but significant, contribution from K+-Cl- cotransporter-1 (KCC1) activity.

DOI: 10.1152/ajpgi.00011.2020
PubMed: 32567323
PubMed Central: PMC7500264


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Parallel intermediate conductance K
<sup>+</sup>
and Cl
<sup>-</sup>
channel activity mediates electroneutral K
<sup>+</sup>
exit across basolateral membranes in rat distal colon.</title>
<author>
<name sortKey="Rehman, Shabina" sort="Rehman, Shabina" uniqKey="Rehman S" first="Shabina" last="Rehman">Shabina Rehman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departments of Biochemistry West Virginia University School of Medicine, Morgantown, West Virginia.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Virginie-Occidentale</region>
</placeName>
<wicri:cityArea>Departments of Biochemistry West Virginia University School of Medicine, Morgantown</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Narayanan, Karthikeyan" sort="Narayanan, Karthikeyan" uniqKey="Narayanan K" first="Karthikeyan" last="Narayanan">Karthikeyan Narayanan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departments of Biochemistry West Virginia University School of Medicine, Morgantown, West Virginia.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Virginie-Occidentale</region>
</placeName>
<wicri:cityArea>Departments of Biochemistry West Virginia University School of Medicine, Morgantown</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Nickerson, Andrew J" sort="Nickerson, Andrew J" uniqKey="Nickerson A" first="Andrew J" last="Nickerson">Andrew J. Nickerson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departments of Biochemistry West Virginia University School of Medicine, Morgantown, West Virginia.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Virginie-Occidentale</region>
</placeName>
<wicri:cityArea>Departments of Biochemistry West Virginia University School of Medicine, Morgantown</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Departments of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Virginie-Occidentale</region>
</placeName>
<wicri:cityArea>Departments of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Coon, Steven D" sort="Coon, Steven D" uniqKey="Coon S" first="Steven D" last="Coon">Steven D. Coon</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Port Peck Community College, Poplar, Montana.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Montana</region>
</placeName>
<wicri:cityArea>Department of Biological Sciences, Port Peck Community College, Poplar</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Hoque, Kazi Mirajul" sort="Hoque, Kazi Mirajul" uniqKey="Hoque K" first="Kazi Mirajul" last="Hoque">Kazi Mirajul Hoque</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Department of Physiology, University of Maryland School of Medicine, Baltimore</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Sandle, Geoffrey I" sort="Sandle, Geoffrey I" uniqKey="Sandle G" first="Geoffrey I" last="Sandle">Geoffrey I. Sandle</name>
<affiliation wicri:level="1">
<nlm:affiliation>Leeds Institute for Medical Research at St. James's, St. James's University Hospital. Leeds, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Leeds Institute for Medical Research at St. James's, St. James's University Hospital. Leeds</wicri:regionArea>
<wicri:noRegion>St. James's University Hospital. Leeds</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rajendran, Vazhaikkurichi M" sort="Rajendran, Vazhaikkurichi M" uniqKey="Rajendran V" first="Vazhaikkurichi M" last="Rajendran">Vazhaikkurichi M. Rajendran</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departments of Biochemistry West Virginia University School of Medicine, Morgantown, West Virginia.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Virginie-Occidentale</region>
</placeName>
<wicri:cityArea>Departments of Biochemistry West Virginia University School of Medicine, Morgantown</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Departments of Medicine, West Virginia University School of Medicine, Morgantown, West Virginia.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Virginie-Occidentale</region>
</placeName>
<wicri:cityArea>Departments of Medicine, West Virginia University School of Medicine, Morgantown</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32567323</idno>
<idno type="pmid">32567323</idno>
<idno type="doi">10.1152/ajpgi.00011.2020</idno>
<idno type="pmc">PMC7500264</idno>
<idno type="wicri:Area/Main/Corpus">000237</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000237</idno>
<idno type="wicri:Area/Main/Curation">000237</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000237</idno>
<idno type="wicri:Area/Main/Exploration">000237</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Parallel intermediate conductance K
<sup>+</sup>
and Cl
<sup>-</sup>
channel activity mediates electroneutral K
<sup>+</sup>
exit across basolateral membranes in rat distal colon.</title>
<author>
<name sortKey="Rehman, Shabina" sort="Rehman, Shabina" uniqKey="Rehman S" first="Shabina" last="Rehman">Shabina Rehman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departments of Biochemistry West Virginia University School of Medicine, Morgantown, West Virginia.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Virginie-Occidentale</region>
</placeName>
<wicri:cityArea>Departments of Biochemistry West Virginia University School of Medicine, Morgantown</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Narayanan, Karthikeyan" sort="Narayanan, Karthikeyan" uniqKey="Narayanan K" first="Karthikeyan" last="Narayanan">Karthikeyan Narayanan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departments of Biochemistry West Virginia University School of Medicine, Morgantown, West Virginia.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Virginie-Occidentale</region>
</placeName>
<wicri:cityArea>Departments of Biochemistry West Virginia University School of Medicine, Morgantown</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Nickerson, Andrew J" sort="Nickerson, Andrew J" uniqKey="Nickerson A" first="Andrew J" last="Nickerson">Andrew J. Nickerson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departments of Biochemistry West Virginia University School of Medicine, Morgantown, West Virginia.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Virginie-Occidentale</region>
</placeName>
<wicri:cityArea>Departments of Biochemistry West Virginia University School of Medicine, Morgantown</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Departments of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Virginie-Occidentale</region>
</placeName>
<wicri:cityArea>Departments of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Coon, Steven D" sort="Coon, Steven D" uniqKey="Coon S" first="Steven D" last="Coon">Steven D. Coon</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Port Peck Community College, Poplar, Montana.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Montana</region>
</placeName>
<wicri:cityArea>Department of Biological Sciences, Port Peck Community College, Poplar</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Hoque, Kazi Mirajul" sort="Hoque, Kazi Mirajul" uniqKey="Hoque K" first="Kazi Mirajul" last="Hoque">Kazi Mirajul Hoque</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Department of Physiology, University of Maryland School of Medicine, Baltimore</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Sandle, Geoffrey I" sort="Sandle, Geoffrey I" uniqKey="Sandle G" first="Geoffrey I" last="Sandle">Geoffrey I. Sandle</name>
<affiliation wicri:level="1">
<nlm:affiliation>Leeds Institute for Medical Research at St. James's, St. James's University Hospital. Leeds, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Leeds Institute for Medical Research at St. James's, St. James's University Hospital. Leeds</wicri:regionArea>
<wicri:noRegion>St. James's University Hospital. Leeds</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rajendran, Vazhaikkurichi M" sort="Rajendran, Vazhaikkurichi M" uniqKey="Rajendran V" first="Vazhaikkurichi M" last="Rajendran">Vazhaikkurichi M. Rajendran</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departments of Biochemistry West Virginia University School of Medicine, Morgantown, West Virginia.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Virginie-Occidentale</region>
</placeName>
<wicri:cityArea>Departments of Biochemistry West Virginia University School of Medicine, Morgantown</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Departments of Medicine, West Virginia University School of Medicine, Morgantown, West Virginia.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Virginie-Occidentale</region>
</placeName>
<wicri:cityArea>Departments of Medicine, West Virginia University School of Medicine, Morgantown</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">American journal of physiology. Gastrointestinal and liver physiology</title>
<idno type="eISSN">1522-1547</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Chloride Channels (genetics)</term>
<term>Chloride Channels (metabolism)</term>
<term>Chlorides (metabolism)</term>
<term>Colon (physiology)</term>
<term>Female (MeSH)</term>
<term>Intestinal Mucosa (metabolism)</term>
<term>Ion Transport (MeSH)</term>
<term>Male (MeSH)</term>
<term>Patch-Clamp Techniques (MeSH)</term>
<term>Potassium (metabolism)</term>
<term>Potassium Channels (genetics)</term>
<term>Potassium Channels (metabolism)</term>
<term>Protein Transport (MeSH)</term>
<term>Rats (MeSH)</term>
<term>Rats, Sprague-Dawley (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Canaux chlorure (génétique)</term>
<term>Canaux chlorure (métabolisme)</term>
<term>Canaux potassiques (génétique)</term>
<term>Canaux potassiques (métabolisme)</term>
<term>Chlorures (métabolisme)</term>
<term>Côlon (physiologie)</term>
<term>Femelle (MeSH)</term>
<term>Muqueuse intestinale (métabolisme)</term>
<term>Mâle (MeSH)</term>
<term>Potassium (métabolisme)</term>
<term>Rat Sprague-Dawley (MeSH)</term>
<term>Rats (MeSH)</term>
<term>Techniques de patch-clamp (MeSH)</term>
<term>Transport des ions (MeSH)</term>
<term>Transport des protéines (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Chloride Channels</term>
<term>Potassium Channels</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Chloride Channels</term>
<term>Chlorides</term>
<term>Potassium</term>
<term>Potassium Channels</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Canaux chlorure</term>
<term>Canaux potassiques</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Intestinal Mucosa</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Canaux chlorure</term>
<term>Canaux potassiques</term>
<term>Chlorures</term>
<term>Muqueuse intestinale</term>
<term>Potassium</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Côlon</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Colon</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Female</term>
<term>Ion Transport</term>
<term>Male</term>
<term>Patch-Clamp Techniques</term>
<term>Protein Transport</term>
<term>Rats</term>
<term>Rats, Sprague-Dawley</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Femelle</term>
<term>Mâle</term>
<term>Rat Sprague-Dawley</term>
<term>Rats</term>
<term>Techniques de patch-clamp</term>
<term>Transport des ions</term>
<term>Transport des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Transepithelial K
<sup>+</sup>
absorption requires apical K
<sup>+</sup>
uptake and basolateral K
<sup>+</sup>
exit. In the colon, apical H
<sup>+</sup>
-K
<sup>+</sup>
-ATPase mediates cellular K
<sup>+</sup>
uptake, and it has been suggested that electroneutral basolateral K
<sup>+</sup>
exit reflects K
<sup>+</sup>
-Cl
<sup>-</sup>
cotransporter-1 (KCC1) operating in parallel with K
<sup>+</sup>
and Cl
<sup>-</sup>
channels. The present study was designed to identify basolateral transporter(s) responsible for K
<sup>+</sup>
exit in rat distal colon. Active K
<sup>+</sup>
absorption was determined by measuring
<sup>86</sup>
Rb
<sup>+</sup>
(K
<sup>+</sup>
surrogate) fluxes across colonic epithelia under voltage-clamp conditions. With zero Cl
<sup>-</sup>
in the mucosal solution, net K
<sup>+</sup>
absorption was reduced by 38%, indicating that K
<sup>+</sup>
absorption was partially Cl
<sup>-</sup>
-dependent. Serosal addition of DIOA (KCC1 inhibitor) or Ba
<sup>2+</sup>
(nonspecific K
<sup>+</sup>
channel blocker) inhibited net K
<sup>+</sup>
absorption by 21% or 61%, respectively, suggesting that both KCC1 and K
<sup>+</sup>
channels contribute to basolateral K
<sup>+</sup>
exit. Clotrimazole and TRAM34 (IK channel blockers) added serosally inhibited net K
<sup>+</sup>
absorption, pointing to the involvement of IK channels in basolateral K
<sup>+</sup>
exit. GaTx2 (CLC2 blocker) added serosally also inhibited net K
<sup>+</sup>
absorption, suggesting that CLC2-mediated Cl
<sup>-</sup>
exit accompanies IK channel-mediated K
<sup>+</sup>
exit across the basolateral membrane. Net K
<sup>+</sup>
absorption was not inhibited by serosal addition of either IbTX (BK channel blocker), apamin (SK channel blocker), chromanol 293B (K
<sub>V</sub>
7 channel blocker), or CFTR
<sub>inh172</sub>
(CFTR blocker). Immunofluorescence studies confirmed basolateral membrane colocalization of CLC2-like proteins and Na
<sup>+</sup>
-K
<sup>+</sup>
-ATPase α-subunits. We conclude that active K
<sup>+</sup>
absorption in rat distal colon involves electroneutral basolateral K
<sup>+</sup>
exit, which may reflect IK and CLC2 channels operating in parallel.
<b>NEW & NOTEWORTHY</b>
This study demonstrates that during active electroneutral K
<sup>+</sup>
absorption in rat distal colon, K
<sup>+</sup>
exit across the basolateral membrane mainly reflects intermediate conductance K
<sup>+</sup>
channels operating in conjunction with chloride channel 2, with a smaller, but significant, contribution from K
<sup>+</sup>
-Cl
<sup>-</sup>
cotransporter-1 (KCC1) activity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32567323</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>10</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1522-1547</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>319</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2020</Year>
<Month>08</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>American journal of physiology. Gastrointestinal and liver physiology</Title>
<ISOAbbreviation>Am J Physiol Gastrointest Liver Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Parallel intermediate conductance K
<sup>+</sup>
and Cl
<sup>-</sup>
channel activity mediates electroneutral K
<sup>+</sup>
exit across basolateral membranes in rat distal colon.</ArticleTitle>
<Pagination>
<MedlinePgn>G142-G150</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1152/ajpgi.00011.2020</ELocationID>
<Abstract>
<AbstractText>Transepithelial K
<sup>+</sup>
absorption requires apical K
<sup>+</sup>
uptake and basolateral K
<sup>+</sup>
exit. In the colon, apical H
<sup>+</sup>
-K
<sup>+</sup>
-ATPase mediates cellular K
<sup>+</sup>
uptake, and it has been suggested that electroneutral basolateral K
<sup>+</sup>
exit reflects K
<sup>+</sup>
-Cl
<sup>-</sup>
cotransporter-1 (KCC1) operating in parallel with K
<sup>+</sup>
and Cl
<sup>-</sup>
channels. The present study was designed to identify basolateral transporter(s) responsible for K
<sup>+</sup>
exit in rat distal colon. Active K
<sup>+</sup>
absorption was determined by measuring
<sup>86</sup>
Rb
<sup>+</sup>
(K
<sup>+</sup>
surrogate) fluxes across colonic epithelia under voltage-clamp conditions. With zero Cl
<sup>-</sup>
in the mucosal solution, net K
<sup>+</sup>
absorption was reduced by 38%, indicating that K
<sup>+</sup>
absorption was partially Cl
<sup>-</sup>
-dependent. Serosal addition of DIOA (KCC1 inhibitor) or Ba
<sup>2+</sup>
(nonspecific K
<sup>+</sup>
channel blocker) inhibited net K
<sup>+</sup>
absorption by 21% or 61%, respectively, suggesting that both KCC1 and K
<sup>+</sup>
channels contribute to basolateral K
<sup>+</sup>
exit. Clotrimazole and TRAM34 (IK channel blockers) added serosally inhibited net K
<sup>+</sup>
absorption, pointing to the involvement of IK channels in basolateral K
<sup>+</sup>
exit. GaTx2 (CLC2 blocker) added serosally also inhibited net K
<sup>+</sup>
absorption, suggesting that CLC2-mediated Cl
<sup>-</sup>
exit accompanies IK channel-mediated K
<sup>+</sup>
exit across the basolateral membrane. Net K
<sup>+</sup>
absorption was not inhibited by serosal addition of either IbTX (BK channel blocker), apamin (SK channel blocker), chromanol 293B (K
<sub>V</sub>
7 channel blocker), or CFTR
<sub>inh172</sub>
(CFTR blocker). Immunofluorescence studies confirmed basolateral membrane colocalization of CLC2-like proteins and Na
<sup>+</sup>
-K
<sup>+</sup>
-ATPase α-subunits. We conclude that active K
<sup>+</sup>
absorption in rat distal colon involves electroneutral basolateral K
<sup>+</sup>
exit, which may reflect IK and CLC2 channels operating in parallel.
<b>NEW & NOTEWORTHY</b>
This study demonstrates that during active electroneutral K
<sup>+</sup>
absorption in rat distal colon, K
<sup>+</sup>
exit across the basolateral membrane mainly reflects intermediate conductance K
<sup>+</sup>
channels operating in conjunction with chloride channel 2, with a smaller, but significant, contribution from K
<sup>+</sup>
-Cl
<sup>-</sup>
cotransporter-1 (KCC1) activity.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rehman</LastName>
<ForeName>Shabina</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Departments of Biochemistry West Virginia University School of Medicine, Morgantown, West Virginia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Narayanan</LastName>
<ForeName>Karthikeyan</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Departments of Biochemistry West Virginia University School of Medicine, Morgantown, West Virginia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nickerson</LastName>
<ForeName>Andrew J</ForeName>
<Initials>AJ</Initials>
<AffiliationInfo>
<Affiliation>Departments of Biochemistry West Virginia University School of Medicine, Morgantown, West Virginia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Departments of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Coon</LastName>
<ForeName>Steven D</ForeName>
<Initials>SD</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Port Peck Community College, Poplar, Montana.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hoque</LastName>
<ForeName>Kazi Mirajul</ForeName>
<Initials>KM</Initials>
<AffiliationInfo>
<Affiliation>Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sandle</LastName>
<ForeName>Geoffrey I</ForeName>
<Initials>GI</Initials>
<AffiliationInfo>
<Affiliation>Leeds Institute for Medical Research at St. James's, St. James's University Hospital. Leeds, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rajendran</LastName>
<ForeName>Vazhaikkurichi M</ForeName>
<Initials>VM</Initials>
<Identifier Source="ORCID">0000-0002-8999-8721</Identifier>
<AffiliationInfo>
<Affiliation>Departments of Biochemistry West Virginia University School of Medicine, Morgantown, West Virginia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Departments of Medicine, West Virginia University School of Medicine, Morgantown, West Virginia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 DK104791</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 DK112085</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>06</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Am J Physiol Gastrointest Liver Physiol</MedlineTA>
<NlmUniqueID>100901227</NlmUniqueID>
<ISSNLinking>0193-1857</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018118">Chloride Channels</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002712">Chlorides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015221">Potassium Channels</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>RWP5GA015D</RegistryNumber>
<NameOfSubstance UI="D011188">Potassium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018118" MajorTopicYN="N">Chloride Channels</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002712" MajorTopicYN="N">Chlorides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003106" MajorTopicYN="N">Colon</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007413" MajorTopicYN="N">Intestinal Mucosa</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017136" MajorTopicYN="N">Ion Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018408" MajorTopicYN="N">Patch-Clamp Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011188" MajorTopicYN="N">Potassium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015221" MajorTopicYN="N">Potassium Channels</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017207" MajorTopicYN="N">Rats, Sprague-Dawley</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">K+ absorption</Keyword>
<Keyword MajorTopicYN="Y">K+ fluxes</Keyword>
<Keyword MajorTopicYN="Y">colon</Keyword>
<Keyword MajorTopicYN="Y">short-circuit current</Keyword>
<Keyword MajorTopicYN="Y">voltage clamping</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pmc-release">
<Year>2021</Year>
<Month>08</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>6</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>6</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32567323</ArticleId>
<ArticleId IdType="doi">10.1152/ajpgi.00011.2020</ArticleId>
<ArticleId IdType="pmc">PMC7500264</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Pflugers Arch. 1992 Sep;421(6):530-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1279514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Sci (Lond). 1987 Sep;73(3):247-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3652631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>. 2003 Jan;284(1):C77-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12388088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pflugers Arch. 2016 Nov;468(11-12):1865-1875</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27752766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1995 Oct;96(4):2002-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7560093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gastroenterology. 1987 Sep;93(3):449-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3609655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Compr Physiol. 2018 Sep 14;8(4):1513-1536</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30215859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2012 Feb;226(3):463-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22009605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2003 Apr;111(7):931-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12671039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Gastrointest Liver Physiol. 2002 Oct;283(4):G1004-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Mar 29;271(13):7277-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8631741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Membr Biol. 1986;91(1):77-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3735407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1989 Jun;256(6 Pt 1):G979-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2735416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Gastrointest Liver Physiol. 2003 Jul;285(1):G185-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12606302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 1990 Apr;423:155-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2143781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Sep 17;10(9):e0138174</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26378782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Gastrointest Liver Physiol. 2000 Aug;279(2):G277-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10915635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2010 May;120(5):1722-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20407206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Membr Biol. 1998 Dec 1;166(3):205-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9843594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1998 Feb;274(2):G424-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9486199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Tissue Res. 2003 Nov;314(2):179-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14513356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2007 May;212(1):66-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17405186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1986 Aug 15;46(4):623-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3015421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Sci (Lond). 1986 Oct;71(4):393-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3757437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2005 May;206(1):46-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15772943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Gastrointest Liver Physiol. 2005 May;288(5):G956-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15618279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pflugers Arch. 2010 Apr;459(5):645-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20143237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kidney Int. 1977 Jul;12(1):9-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">142857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2004 Sep;204(1):84-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15307141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>. 2012 Aug 1;303(3):C328-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22648950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Membr Biol. 2010 May;235(1):27-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20411246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1991 Dec;261(6 Pt 1):G1005-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1837421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 2007 Sep 1;583(Pt 2):705-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17584847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Gastrointest Liver Physiol. 2012 Dec 15;303(12):G1322-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23064759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>. 2002 Apr;282(4):C805-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11880269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Med. 2012 Jun;2(6):a009563</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22675668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kidney Int. 1985 Dec;28(6):899-913</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3003443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1992 Nov;263(5 Pt 2):F769-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1443167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>. 2013 Nov 1;305(9):C972-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23986198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 1999 Aug 15;519 Pt 1:251-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10432355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1986 Nov;251(5 Pt 1):G619-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3022598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Nephrol. 1999 Sep;19(5):405-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10511380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2005 Sep 15;118(Pt 18):4243-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16155254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Nov 22;271(47):29759-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8939912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1986 Aug;251(2 Pt 1):C252-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2426961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Oct 6;275(40):30813-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10878016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>. 2010 Aug;299(2):C251-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20445171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1984 May;246(5 Pt 1):G611-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6720956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gut. 2003 Jun;52(6):854-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12740342</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
<li>Montana</li>
<li>Virginie-Occidentale</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Virginie-Occidentale">
<name sortKey="Rehman, Shabina" sort="Rehman, Shabina" uniqKey="Rehman S" first="Shabina" last="Rehman">Shabina Rehman</name>
</region>
<name sortKey="Coon, Steven D" sort="Coon, Steven D" uniqKey="Coon S" first="Steven D" last="Coon">Steven D. Coon</name>
<name sortKey="Hoque, Kazi Mirajul" sort="Hoque, Kazi Mirajul" uniqKey="Hoque K" first="Kazi Mirajul" last="Hoque">Kazi Mirajul Hoque</name>
<name sortKey="Narayanan, Karthikeyan" sort="Narayanan, Karthikeyan" uniqKey="Narayanan K" first="Karthikeyan" last="Narayanan">Karthikeyan Narayanan</name>
<name sortKey="Nickerson, Andrew J" sort="Nickerson, Andrew J" uniqKey="Nickerson A" first="Andrew J" last="Nickerson">Andrew J. Nickerson</name>
<name sortKey="Nickerson, Andrew J" sort="Nickerson, Andrew J" uniqKey="Nickerson A" first="Andrew J" last="Nickerson">Andrew J. Nickerson</name>
<name sortKey="Rajendran, Vazhaikkurichi M" sort="Rajendran, Vazhaikkurichi M" uniqKey="Rajendran V" first="Vazhaikkurichi M" last="Rajendran">Vazhaikkurichi M. Rajendran</name>
<name sortKey="Rajendran, Vazhaikkurichi M" sort="Rajendran, Vazhaikkurichi M" uniqKey="Rajendran V" first="Vazhaikkurichi M" last="Rajendran">Vazhaikkurichi M. Rajendran</name>
</country>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Sandle, Geoffrey I" sort="Sandle, Geoffrey I" uniqKey="Sandle G" first="Geoffrey I" last="Sandle">Geoffrey I. Sandle</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000227 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000227 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32567323
   |texte=   Parallel intermediate conductance K+ and Cl- channel activity mediates electroneutral K+ exit across basolateral membranes in rat distal colon.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32567323" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020